Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
BMC Med Res Methodol ; 22(1): 35, 2022 01 30.
Article in English | MEDLINE | ID: covidwho-1699687

ABSTRACT

BACKGROUND: We investigated whether we could use influenza data to develop prediction models for COVID-19 to increase the speed at which prediction models can reliably be developed and validated early in a pandemic. We developed COVID-19 Estimated Risk (COVER) scores that quantify a patient's risk of hospital admission with pneumonia (COVER-H), hospitalization with pneumonia requiring intensive services or death (COVER-I), or fatality (COVER-F) in the 30-days following COVID-19 diagnosis using historical data from patients with influenza or flu-like symptoms and tested this in COVID-19 patients. METHODS: We analyzed a federated network of electronic medical records and administrative claims data from 14 data sources and 6 countries containing data collected on or before 4/27/2020. We used a 2-step process to develop 3 scores using historical data from patients with influenza or flu-like symptoms any time prior to 2020. The first step was to create a data-driven model using LASSO regularized logistic regression, the covariates of which were used to develop aggregate covariates for the second step where the COVER scores were developed using a smaller set of features. These 3 COVER scores were then externally validated on patients with 1) influenza or flu-like symptoms and 2) confirmed or suspected COVID-19 diagnosis across 5 databases from South Korea, Spain, and the United States. Outcomes included i) hospitalization with pneumonia, ii) hospitalization with pneumonia requiring intensive services or death, and iii) death in the 30 days after index date. RESULTS: Overall, 44,507 COVID-19 patients were included for model validation. We identified 7 predictors (history of cancer, chronic obstructive pulmonary disease, diabetes, heart disease, hypertension, hyperlipidemia, kidney disease) which combined with age and sex discriminated which patients would experience any of our three outcomes. The models achieved good performance in influenza and COVID-19 cohorts. For COVID-19 the AUC ranges were, COVER-H: 0.69-0.81, COVER-I: 0.73-0.91, and COVER-F: 0.72-0.90. Calibration varied across the validations with some of the COVID-19 validations being less well calibrated than the influenza validations. CONCLUSIONS: This research demonstrated the utility of using a proxy disease to develop a prediction model. The 3 COVER models with 9-predictors that were developed using influenza data perform well for COVID-19 patients for predicting hospitalization, intensive services, and fatality. The scores showed good discriminatory performance which transferred well to the COVID-19 population. There was some miscalibration in the COVID-19 validations, which is potentially due to the difference in symptom severity between the two diseases. A possible solution for this is to recalibrate the models in each location before use.


Subject(s)
COVID-19 , Influenza, Human , Pneumonia , COVID-19 Testing , Humans , Influenza, Human/epidemiology , SARS-CoV-2 , United States
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.26.20112649

ABSTRACT

Abstract Importance COVID-19 is causing high mortality worldwide. Developing models to quantify the risk of poor outcomes in infected patients could help develop strategies to shield the most vulnerable during de-confinement. Objective To develop and externally validate COVID-19 Estimated Risk (COVER) scores that quantify a patient's risk of hospital admission (COVER-H), requiring intensive services (COVER-I), or fatality (COVER-F) in the 30-days following COVID-19 diagnosis. Design Multinational, distributed network cohorts. Setting We analyzed a federated network of electronic medical records and administrative claims data from 13 data sources and 6 countries, mapped to a common data model. Participants Model development used a patient population consisting of >2 million patients with a general practice (GP), emergency room (ER), or outpatient (OP) visit with diagnosed influenza or flu-like symptoms any time prior to 2020. The model was validated on patients with a GP, ER, or OP visit in 2020 with a confirmed or suspected COVID-19 diagnosis across four databases from South Korea, Spain and the United States. Outcomes Age, sex, historical conditions, and drug use prior to index date were considered as candidate predictors. Outcomes included i) hospitalization with pneumonia, ii) hospitalization with pneumonia requiring intensive services or death, and iii) death in the 30 days after index date. Results Overall, 43,061 COVID-19 patients were included for model validation, after initial model development and validation using 6,869,127 patients with influenza or flu-like symptoms. We identified 7 predictors (history of cancer, chronic obstructive pulmonary disease, diabetes, heart disease, hypertension, hyperlipidemia, and kidney disease) which combined with age and sex could discriminate which patients would experience any of our three outcomes. The models achieved high performance in influenza. When transported to COVID-19 cohorts, the AUC ranges were, COVER-H: 0.73-0.81, COVER-I: 0.73-0.91, and COVER-F: 0.82-0.90. Calibration was overall acceptable, with overestimated risk in the most elderly and highest risk strata. Conclusions and relevance A 9-predictor model performs well for COVID-19 patients for predicting hospitalization, intensive services and death. The models could aid in providing reassurance for low risk patients and shield high risk patients from COVID-19 during de-confinement to reduce the virus' impact on morbidity and mortality.


Subject(s)
Infections , Pulmonary Disease, Chronic Obstructive , Pneumonia , Diabetes Mellitus , Neoplasms , Kidney Diseases , Death , Hypertension , COVID-19 , Heart Diseases , Hyperlipidemias
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.22.20074336

ABSTRACT

Background In this study we phenotyped individuals hospitalised with coronavirus disease 2019 (COVID-19) in depth, summarising entire medical histories, including medications, as captured in routinely collected data drawn from databases across three continents. We then compared individuals hospitalised with COVID-19 to those previously hospitalised with influenza. Methods We report demographics, previously recorded conditions and medication use of patients hospitalised with COVID-19 in the US (Columbia University Irving Medical Center [CUIMC], Premier Healthcare Database [PHD], UCHealth System Health Data Compass Database [UC HDC], and the Department of Veterans Affairs [VA OMOP]), in South Korea (Health Insurance Review & Assessment [HIRA]), and Spain (The Information System for Research in Primary Care [SIDIAP] and HM Hospitales [HM]). These patients were then compared with patients hospitalised with influenza in 2014-19. Results 34,128 (US: 8,362, South Korea: 7,341, Spain: 18,425) individuals hospitalised with COVID-19 were included. Between 4,811 (HM) and 11,643 (CUIMC) unique aggregate characteristics were extracted per patient, with all summarised in an accompanying interactive website (http://evidence.ohdsi.org/Covid19CharacterizationHospitalization/). Patients were majority male in the US (CUIMC: 52%, PHD: 52%, UC HDC: 54%, VA OMOP: 94%,) and Spain (SIDIAP: 54%, HM: 60%), but were predominantly female in South Korea (HIRA: 60%). Age profiles varied across data sources. Prevalence of asthma ranged from 4% to 15%, diabetes from 13% to 43%, and hypertensive disorder from 24% to 70% across data sources. Between 14% and 33% were taking drugs acting on the renin-angiotensin system in the 30 days prior to hospitalisation. Compared to 81,596 individuals hospitalised with influenza in 2014-19, patients admitted with COVID-19 were more typically male, younger, and healthier, with fewer comorbidities and lower medication use. Conclusions We provide a detailed characterisation of patients hospitalised with COVID-19. Protecting groups known to be vulnerable to influenza is a useful starting point to minimize the number of hospital admissions needed for COVID-19. However, such strategies will also likely need to be broadened so as to reflect the particular characteristics of individuals hospitalised with COVID-19.


Subject(s)
Diabetes Mellitus , Hypertension , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL